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Abstract 

In this background paper, we describe the science that underlies climate models. We then develop 

several energy balance models (EBMs), including the carbon-climate module found in Nordhaus’ 

Dynamic Integrated Climate Economic (DICE) model. The climate model in DICE is modified to 

track the average path of temperatures from the CMIP5 ensemble. The parameterization of the 

DICE model is described. Finally, the re-parameterized DICE model is then modified to 

investigate the impact that a global effort to increase forest growth would have on the social cost 

of carbon. 
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1. INTRODUCTION 

Climate change is one of the most contentious policy issues of the early 21st Century. In December 

2015, nations signed the Paris Agreement, which aims “to strengthen the global response to the 

threat of climate change by keeping a global temperature rise this century well below 2 degrees 

Celsius (oC) above pre-industrial levels and to pursue efforts to limit the temperature increase even 

further to 1.5oC. Additionally, the agreement aims to strengthen the ability of countries to deal 

with the impacts of climate change” (United Nations, 2015). Subsequently, the U.S. Fourth 

National Climate Assessment (NCA) expressed fear that “climate change creates new risks and 

exacerbates existing vulnerabilities in communities across the United States, presenting growing 

challenges to human health and safety, quality of life, and the rate of economic growth” 

(Reidmiller et al., 2017). Climate change and how to prevent it from happening has become the 

21st Century’s most contentious policy issue. However, to determine whether mitigation is 

worthwhile undertaking it is necessary to know something about the marginal damage (MD) from 

emitting another tonne of CO2 (tCO2). The MD is needed to guide the development of climate 

change mitigation policies. 

Climate change is a contentious policy issue (Tol 2014; Nordhaus 2013). There is a great 

deal of uncertainty concerning climate change, especially regarding (1) the projected increase in 

average global temperatures (McKitrick & Christy 2019a; Lewis & Curry 2018; Hourdin et al. 

2017; Millar et al. 2017; McKitrick & Vogelsang 2014); (2) the regional changes in climate that 

might be expected (Koonin 2021; McKitrick & Christy 2019b; Pielke 2018; Lomborg 2007); and 

(3) the contribution to global warming of human activities (e.g., burning of fossil fuels, land use 

changes) versus that of natural factors (e.g., CO2 release from or absorption by oceans, changes in 

the sun’s activities) (Koutsoyiannis 2021; Maher et al. 2020; Lindzen 2020; Zharkova et al. 2019; 
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Frank 2019; Richard 2019; de Larminat 2016, 2019; Svensmark et al. 2017; McKitrick & 

Nierenberg 2011; McKitrick & Michaels 2004, 2007; Khilyuk & Chilingar 2006; de Laat & 

Maurellis 2004, 2006). With respect to the latter, it is worth noting that Article 1 of the United 

Nations Framework Convention on Climate Change (UNFCCC) of 1992 defines ‘climate change’ 

as: “a change of climate which is attributed directly or indirectly to human activity that alters the 

composition of the global atmosphere and which is in addition to natural climate variability 

observed over comparable time periods.” 

There is also controversy concerning the way in which the mean surface temperatures are 

estimated, especially how weather-station data are averaged over a certain area (Essex and 

McKitrick 2002; van Kooten 2013, pp.16-48). Some have argued that past surface (and ocean) 

temperatures have been lowered, thereby making more recent temperatures appear higher (Hoven 

2012; see also IPCC 2013, pp.188-189).2 Whether this is the case is likely to remain controversial, 

but it is now well established that temperatures during the Medieval Warm Period (circ 12th 

Century) may have been warmer than currently—that the so-called ‘hockey stick’ graph of 

temperatures has been refuted (see McIntyre & McKitrick, 2009; van Kooten 2013, pp.71-97; 

McKitrick 2015). Further, there are questions regarding the appropriateness of using the Earth’s 

mean surface temperature as the indicator of climate change. Given that climate models focus on 

changes in the atmosphere, it is atmospheric temperatures that are important, especially the 

temperature in the troposphere (or about 10 km) above the tropics where the first evidence of 

warming is supposed to occur (e.g., see Christy & McNider 2017; IPCC 2001, pp.695-738). 

                                                      
2 See also Investor’s Business Daily editorial (29-Mar-2018), ‘The Stunning Statistical Fraud Behind The 
Global Warming Scare’ at https://www.investors.com/politics/editorials/the-stunning-statistical-fraud-
behind-the-global-warming-scare/ [accessed May 7, 2021]. See Dahlman & Lindsey (2020) for a 
description regarding measurement of ocean temperatures using Argo buoys.  

 

https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_s/Philippe+de+Larminat
https://www.investors.com/politics/editorials/the-stunning-statistical-fraud-behind-the-global-warming-scare/
https://www.investors.com/politics/editorials/the-stunning-statistical-fraud-behind-the-global-warming-scare/
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The current study focuses on economic aspects of global warming, primarily the need to 

examine costs and benefits. The types of models that economists employ begin by assuming that 

CO2 emissions from fossil fuel use lead to rising concentrations of atmospheric CO2 that, in turn, 

results in damages to the economy. As noted, considerable uncertainty exists regarding the 

potential damages from future climate change, which, in turn, constitute the benefits of mitigating 

(avoiding) global warming. This is seen in the controversy concerning estimates of marginal 

damages, which depend crucially on estimates of expected damages (e.g., Auffhammer 2018; 

Dayaratna et al. 2017; Pindyck 2013). For instance, many damage estimates concern goods and 

services that are not traded in markets (e.g., wetland services, biodiversity, heat and mental stress, 

threats to national security), and thereby are not easily valued. It is difficult to determine how 

climate change affects these types of things, let alone place a value on the changes that occur.3 

Policymakers need estimates of marginal damages—also referred to as the social cost of 

carbon (SCC)—to guide decisions about carbon taxes and for determining the benefits (damages 

avoided) of mitigation strategies. SCC estimates are available from three integrated assessment 

models (IAMs), two of which are open source—William Nordhaus’ Dynamic Integrated Climate 

and Economics (DICE) model (Nordhaus 2013, 2018a, 2019) and Richard Tol’s Climate 

Framework for Uncertainty, Negotiation and Distribution (FUND) model (Tol 2014).4 Such IAMs 

have been criticized by both economists and climate scientists. For example, Robert Pindyck 

(2013, 2017) finds that models are too ad hoc, with outcomes highly sensitive to assumed 

parameter values. Nicholas Lewis (2018) finds that the parameterization of the carbon-climate 

                                                      
3 Many argue that climate change is already happening, citing increases in droughts, wildfire, floods, 
hurricanes and other weather events as evidence. Such evidence simply does not exist. Even the IPCC 
concludes that there is still no evidence that harmful weather events have increased as the globe has warmed 
since pre-industrial times. See Alexander (2020, 2021) and Goklany (2021) and references therein. 
4 The third is the Policy Analysis of the Greenhouse Effect (PAGE), which is not open source (Hope 2006). 
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component of the DICE model, in particular, is faulty. Not surprisingly, the same is true of the 

climate models themselves (Lewis & Curry 2015, 2018; Hourdin et al. 2017; Millar et al. 2017; 

Voosen 2016). Despite such criticism, IAMs offer one of the only ways that economists can 

provide policy advice that is informed by the findings of the climate models and the Shared 

Socioeconomic Pathways (SSPs), or storylines, that are used to determine the Representative 

Concentration Pathways (RCPs) of future CO2 emissions (Riahi et al. 2017; van Vuuren et al. 

2011). 

In this paper, we employ the DICE model to investigate two particular aspects related to 

the estimation of marginal damages, or SCC. First, the objective in DICE is to maximize the 

present value of the per capita utility that people get from consumption, subject to various 

economic, biophysical and climate constraints. Since utility from consumption accrues over a 

period of 100 or more years, the issue is intergenerational and sensitive to the choice of discount 

rate. Further, DICE outputs depend on assumptions regarding the causal relationship between CO2 

emissions and temperature, and then between temperature and economic damages, relationships 

that are derived from global climate models. The carbon, temperature and damage components in 

DICE are sensitive to the parameterizations employed. We use Monte Carlo simulation over a 

variety of model components to examine the sensitivity of SCC to various parameterizations. 

Second, the SCC changes over time partly because, when another tCO2 is released to the 

atmosphere, it creates a higher level of damage than the previous tCO2—damages rise at an 

increasing rate. But there is more to it than this, because the timing of CO2 should work in the 

opposite direction—future emissions of CO2 should be worth less than today’s emissions, 

particularly if there is some urgency to mitigate global warming. Clearly, any CO2 removed from 

the atmosphere in 20 or more years from now, say by growing trees, is irrelevant if there is a 
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climate emergency. However, future carbon fluxes are not treated as if they are worth less than 

current fluxes, because the intergenerational discount rate is too low. That is, the rate used to 

discount the future (the social rate of time preference plus the elasticity of marginal utility of per 

capita consumption multiplied by the rate of change in consumption) is some 3% to 4% (it actually 

changes over time and is sensitive to the elasticity of the marginal utility of consumption). If the 

marginal damage (SCC) rises at an annual rate of 3.6%, the effective rate at which future carbon 

fluxes are discounted could be positive (4.0% minus 3.6%) or even negative (3.0% minus 3.6%). 

Future carbon fluxes might be inflated relative to today or they are discounted at a near zero rate. 

These low or negative rates provide an incentive to move forward emissions of CO2 (whenever 

possible) but delay removals of CO2 from the atmosphere (e.g., growing trees), perhaps 

indefinitely if the effective rate is negative. Yet, if there is some urgency in addressing climate 

change, the rate used to discount future CO2 emissions should be much higher (van Kooten et al. 

2021; van Kooten & Johnston 2016; Johnston & van Kooten 2015). Urgency is a policy variable 

but it gets entangled with the intergenerational discount rate used for monetary values (van Kooten 

2021, pp.41-46). These rates are different and we demonstrate why and, using the DICE model, 

the implications this could have for mitigation activities. 

The paper is structured as follows. Since we considerably modify Nordhaus’ (2018b, 2017) 

DICE model (version 2016R2-083017), we need to discuss the various changes that we made to 

the key model equations. One of these relates to the modeling of the carbon component of the 

model; we explain the parameters that Nordhaus used so that our assumptions are clarified. The 

DICE model can be decomposed into three major components: (1) the objective function; (2) the 

carbon and climate modules; and (3) the economic component, which includes emissions and 

damages. Rather than beginning with the objective function, we first consider the carbon and 
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climate modules. We do this by starting in Section 2 with a discussion of climate models more 

generally. In Section 3, we develop different climate models that can be used in the DICE model. 

In Sections 4 and 5, we discuss the basics of the DICE model’s objective function component as 

well as an application of the DICE model to investigate the economics of forestlands restoration 

for climate change mitigation. Finally, we offer a concluding discussion including the next steps 

we plan to undertake for future research.  

2. CARBON AND CLIMATE COMPONENTS OF THE DICE MODEL 

Background Physics 

Averaged over the entire surface of the Earth, net incoming energy represents about 342 Watts per 

square meter (W/m2) of incident solar irradiance. Of the 342 W/m2, about 240 W/m2 makes it into 

the Earth’s atmosphere, with the difference scattered by air, water vapor and aerosols, or reflected 

by clouds or even by the Earth’s surface. About 65 W/m2 is absorbed by the atmosphere and 

clouds, while 175 W/m2 actually reaches the Earth’s surface where it is absorbed. Outgoing 

longwave radiation emitted from the atmosphere into space represents an energy loss to space of 

some 235 W/m2 (or 40.7% of total incoming solar energy). These numbers are approximations as 

they depend on a large number of factors, including the location of the Earth relative to the sun, 

solar activity, the Earth’s albedo, the heat absorbed by so-called greenhouse gases (GHGs), cloud 

cover, et cetera. The difference between the incoming (mainly shortwave) radiation and the 

outgoing (longwave) radiation is referred to as the radiative forcing, and it makes the Earth’s 

temperature warm enough for life.  

How do we measure the warming effects of incoming versus outgoing radiation—the 

radiative forcing and the impact of humans on the system? Consider first the Stefan-Boltzmann 

law that gives the irradiance (F) or outgoing radiation from any blackbody (Wallace and Hobbs 
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2006, p.117; Pierrehumbert 2011; Happer 2019): 

F(T) = –σ T 4 [W ∙ m–2], (1) 

where σ = 5.67×10–8 W ∙ m–2 ∙ K–4 is the Stefan-Boltzmann constant and T refers to temperature. 

Unlike a pure blackbody, the Earth is characterized by clouds that reflect light and an atmosphere 

that reflects and scatters light and absorbs some of the outgoing radiation. Calculating the radiative 

forcing is not straightforward, because there are different ways to calculate the amount of solar 

energy that gets absorbed by the Earth’s surface and atmosphere. 

By modifying the Stefan-Boltzmann law, it is possible to determine the solar energy flux 

or irradiance (also known as insolation) reaching the Earth, symbolized by S0 and measured in 

W/m2 [W ∙ m–2]. The solar energy flux varies with the distance from the sun according to:  

S0 = σ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠4
𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠2

𝑑𝑑𝐸𝐸𝐸𝐸
2 , (2) 

where dES is the distance between the Earth and the sun. Given that the average surface (but not 

core) temperature of the sun is 5,780 degrees Kelvin (K), the radius of the sun is 695,500 km, and 

the average distance from the Earth to the sun is 149.6 million km, then S0 = 1,367.81 W ∙ m–2. 

This is the solar constant for the Earth, although it will differ throughout the year as the distance 

between the sun and the Earth varies. Upon dividing by four to determine the incident solar 

radiation over the Earth’s surface exposed to the sun at any time, we get an average radiation of 

342 W ∙ m–2. 

The surface area of a sphere is equal to 4πr2, where r is the radius of the sphere. Since about 

one-quarter of the Earth’s overall surface is directly exposed to the sun at any time, the solar energy 

that reaches the Earth at any time is given by S0 π r2, where r refers to the radius of the Earth (6,378 
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km).5 Earth has a surface area of approximately 5.114 × 1014 m2. If the Earth was a perfect 

blackbody, it would radiate energy according to the Stefan-Boltzmann law (1), but then from the 

entire sphere and not just that part exposed to the sun. This implies that, as a blackbody, the Earth 

would radiate energy to space according to 4 σ T4 π r2. At the same time, it would absorb energy 

from the sun according to S0 π r2. Equating these two expressions gives: 

S0 π r2 = 4 σ T 4 π r2 ⇒ S0 = 4 σ T 4. (3) 

Solving result (3) for T gives the average temperature of the Earth if it had no atmosphere. The 

result is a temperature of 278.67 K, or 5.52oC (given that absolute zero is –273.15 K). The average 

surface temperature of the Earth is actually about 15oC because the Earth is not a blackbody.6 

While the atmosphere scatters and reflects light, it also absorbs some outgoing radiation, thereby 

warming the Earth. The role of anthropogenic emissions of CO2 and other GHGs, which we lump 

together under the rubric of CO2, plays out in the atmosphere only.7  

Solar irradiation (insolation) constitutes one type of forcing, while human emissions of 

CO2 constitute another. The total radiative forcing historically consists of anthropogenic, volcanic 

and solar contributions (de Larminat 2019): 

F = Fanth + Fvolc + Fsol. (4) 

This can be rewritten to reflect the relationship between real radiative forcing, denoted Fx, and the 

a priori forcing, fx, with Fx = ax × fx, where ax are scaling factors associated with forcing type x and 

                                                      
5 We divide the area of a sphere, given by 4 π r2, by 4 to account for the fact that only one-quarter of the 
Earth’s surface is exposed to the sun at any given time. 
6 The average temperature of the Earth in 2017 was 14.9oC https://www.space.com/17816-earth-
temperature.html [accessed May 4, 2021].  
7 Under idealized dry conditions, nitrogen constitutes about 78% of the atmosphere, or 780,840 parts per 
million by volume (hereafter ppm); oxygen (O2), 20.9% (209,460 ppm); argon (Ar), 0.93% (9,340 ppm); 
carbon dioxide (CO2), 0.041% (410 ppm), varying by season and increasing; methane (CH4), 0.00018% 
(1.79 ppm); nitrous oxide (N2O), 0.0000325% (0.325 ppm); and ozone (O3), 0 to 0.000007% (0.0-0.07 
ppm). CO2, CH4, N2O and O3 constitute the greenhouse gases, along with water vapor (H2O). 

https://www.space.com/17816-earth-temperature.html
https://www.space.com/17816-earth-temperature.html
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these should be close to 1.0. Then, following de Larminat (2019), we rewrite (4) as: 

F = aanth fanth + avolc fvolc + aLsol fLsol + aHsol fHsol, (5) 

where the single solar signal is divided into a low- and a high-frequency component. De Larminat 

(2019) estimated the scaling factors using observational data, and these values are discussed 

further in the context of climate models. We will not consider further the volcanic forcing except 

to provide some notion of its contribution.  

Anthropogenic Forcing 

The anthropogenic forcing is the result of CO2 (including other GHG) emissions and removals, 

and works as follows. Because longwave infrared radiation (IR) emanates from the surface of the 

Earth, some of the CO2 molecules, which constitute about 0.04% of the volume of the atmosphere, 

enter into a higher vibrational mode by absorbing IR in the 14-16-micrometer (μm) range. This 

does not, in and of itself, raise the temperature of the atmosphere. The CO2 molecules might simply 

re-radiate the energy into the atmosphere and no warming occurs. More likely, the excited CO2 

molecules will collide with other molecules, such as N2, O2 and H2O, thereby transferring their 

vibrational energy into thermal energy (speeding up the other molecules), leading to a rise in 

atmospheric temperature. This constitutes a positive feedback to the initial CO2 forcing.8 

As indicated in Table 1, during the industrial era the radiative forcing due to well-mixed 

GHGs is estimated to be 2.83 W/m2, with a range of 2.54 to 3.12 W/m2; CO2 contributed nearly 

65% of the GHG forcing since 1750, or 1.84 W/m2. The radiative forcing of CO2 is determined to 

increase as the concentration of CO2 in the atmosphere increases and is currently assessed to be 

                                                      
8 The absorption of thermal radiation by GHG molecules occurs mainly as a result of oscillating electric 
dipole moments induced by vibrations and rotations of these molecules. Since N2 and O2 produce no 
oscillating dipole movement, they absorb no thermal radiation. One effect of the slight warming caused by 
CO2 is an increase in humidity due to the atmosphere’s ability to hold more H2O, which, because molecules 
of H2O produce oscillating dipole movements, absorb additional radiant heat. 
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increasing at a rate of 0.3 W/m2 per decade (IPCC 2013, p.676).  

Table 1: Global Mean Radiative Forcing, 1750 to 2011a  
Source RF (W/m2)a Range (W/m2) 
Total anthropogenic forcing +2.30 [+1.10, +3.30] 
Well-mixed GHGs (CO2, CH4, N2O, CFC, halocarbon) +2.83 [+2.54, +3.12] 
Aerosol-radiation interactionb –0.45 [–0.95, +0.05] 
Aerosol-cloud interaction –0.45 [–1.20, +0.00] 
Troposphere ozone +0.40 [+0.20, +0.60] 
Stratosphere ozone –0.05 [–0.15, +0.05] 
Stratosphere water vapor +0.07 [+0.02, +0.12] 
Surface albedo (land use) –0.15 [–0.25, –0.05] 
Surface albedo (black carbon aerosol on snow & ice) +0.04 [+0.02, +0.09] 
Combined contrails & contrail-induced cirrus +0.05 [+0.02, +0.15] 
Solar irradiance +0.05 [+0.00, +0.10] 

a Effective radiative forcing (ERF) is used rather than radiative forcing (RF) where they differ, because ERF has been shown to 
be a better indicator of the global mean surface temperature (GMST) response and is emphasized by the IPCC (2013, p.53 of 
Technical Summary). 
b Biomass burning is neutral, although in previous reports it was negative and then slightly positive in AR4 (IPCC 2007). 
Source: IPCC (2013, Table 8.6, p.696). 

The anthropogenic radiative forcing for a doubling of CO2 is F2×CO2 ≈ 3.7 W ∙ m–2 ≈ 5.35 

ln(2) W ∙ m–2. The anthropogenic a priori forcing factor is then given by  

Fanth,t = F2×CO2 ×
𝑙𝑙𝑠𝑠�

CO2,𝑡𝑡
CO2,I

�

𝑙𝑙𝑠𝑠(2)
, (6) 

where CO2,I refers to the pre-industrial (1750) level of atmospheric CO2, which is usually taken to 

be about 280 ppm. Employing equation (6), and an atmospheric CO2 concentration of 415 ppm, 

the anthropogenic forcing equals 2.10 W ∙ m–2. What will it be in 2100? The forcing in the year 

2100 depends on a variety of factors, including the value of F2×CO2 and the rate at which the 

radiative forcing of CO2 is considered to be increasing, and on how much anthropogenic CO2 will 

be emitted to the atmosphere in the next eight decades.  

Solar Forcing 

Notice that, from Table 1, the role of the sun is considered to be minimal. Variations in solar 

irradiation are considered by the IPCC to be extremely small compared to CO2 (recall we assume 

CO2 includes other GHGs). This is in keeping with the view that the forcing caused by the sun has 
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changed little over the past millennia, as evidenced by the ‘hockey stick’ graph (van Kooten 2013, 

pp.78-95). In contrast, using observational data, some researchers have determined that solar 

forcings actually dominate anthropogenic ones (e.g., Khilyuk & Chilingar 2006; de Larminat 2016, 

2019; Svensmark et al. 2017; Zharkova et al. 2019).9 

Feedbacks and Mean Surface and Ocean Temperatures 

Any forcing or perturbation can have exacerbating (positive) or suppressing (negative) feedbacks. 

For example, if there is a perturbation that causes temperatures to fall, more snow and ice are 

likely; snow and ice lead to an albedo reflecting sunlight back to space, thereby enhancing the 

original cooling. Thus, snow and ice formation constitute an exacerbating feedback because they 

tend to reduce further the original reduction in temperature. Conversely, the warming effect of 

increased atmospheric CO2 will tend to reduce snow and ice, thereby reducing the Earth’s albedo 

and increasing its temperature. Likewise, a warmer atmosphere will hold more water vapor, which 

is a potent GHG that amplifies the initial warming due to CO2 and other trace GHGs such as 

methane (CH4), nitrous oxide (N2O) and chlorofluorocarbons (HFCs).10 To determine the impact 

of human emissions of CO2 on climate, therefore, we need to take into account related feedbacks, 

which can either amplify or dampen the forcing from adding CO2 into the atmosphere.  

Feedbacks are crucial for determining the anthropogenic impact on average global 

temperature. Suppose anthropogenic emissions of CO2 introduce a forcing F into the system, 

where there was none previously and temperatures had remained constant. With the CO2 forcing, 

the system will, over time, come back to a new (higher) temperature equilibrium given by the 

                                                      
9 A common conclusion concerning attribution of climate change is the following: “The unavoidable 
conclusion is that a temperature signal from anthropogenic CO2 emissions (if any) cannot have been, nor 
presently can be, evidenced in climate observables” (Frank 2019, p.14). 
10 But see Koutsoyiannis (2021), who argues that climate models are wrong because they assume climate 
to be a static concept rather than a stochastic one, claiming instead that water controls the climate, not CO2. 

https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_s/Philippe+de+Larminat
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following equation (McGuffie and Henderson-Sellers 2009, p.39; Spencer & Braswell 2010; Pretis 

2020):  

            𝑑𝑑𝑇𝑇𝑚𝑚
𝑑𝑑𝑑𝑑

= 1
𝐶𝐶𝑚𝑚

 (F – λ Tm), (7) 

where Tm is the temperature departure from a long-term average equilibrium (oC or K) of system 

component m; dt represents the time step;11 Cm is the effective heat capacity of system component 

m—the energy required to change the temperature of the component by 1oC; F is the externally 

prescribed net radiative forcing (W ∙ m–2); and λ is the total feedback parameter (W ∙ m–2 ∙ K–1). If 

T refers to the mean global average surface temperature, we can write the temperature departure 

from its long-run average at any time t as Tt = TS,t – TI, where TS,t is the surface temperature at time 

t and TI the pre-industrial temperature. The term λTm thus captures the increasing outgoing 

longwave radiation as temperatures rise. 

The effective heat capacity of the atmosphere is the amount of energy required to heat up 

the surface by 1oC. It equals the total mass multiplied by its specific heat at constant pressure: 

CA = cp pa /g = (1,006 J ∙ kg–1 ∙ K–1 × 105 Pa) / (9.81 m ∙ s–2) = 1.025 × 107 J ∙ K–1 ∙ m–2, (8) 

where pa is the atmospheric pressure (1 bar), cp is the specific heat capacity of the atmosphere, and 

g refers to the gravitational force (Hartmann 2016). For the atmosphere, cp equals 1.006 kJ ∙ kg–1 ∙ 

K–1 at 1 bar of atmospheric pressure (the subscript in cp refers to pressure).12 

Likewise, we can find the total effective heat capacity of the ocean as its mass times the 

specific heat at some depth:  

CO = pw cw d = d ×103 kg ∙ m–3 × 4,187 J ∙ kg–1 ∙ K–1 = d × 4.187 × 106 J ∙ K–1 ∙ m–3, (9) 

                                                      
11 The time step differs from e-folding time, which is the time interval in which an exponentially growing 
quantity increases by a factor of e=2.71828; thus, it is the base-e analog of doubling time. 
12 In terms of conversions, 1 bar = 105 Pa, where a Pascal (Pa) = 1 N ∙ m–2 = 1 kg ∙ m–1 ∙ s–2 = 1 J ∙ m–3.  
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where pw is the density of water (1000 kg/m3), cw is the specific heat capacity of water (4.187 kJ ∙ 

kg–1 ∙ K–1), and d is the depth of the ocean (Hartmann 2016; McGuffie and Henderson-Sellers 

2009, p.84). For the ocean, cw varies from 4.000 through 4.011 kJ ∙ kg–1 ∙ K–1, depending on the 

ocean temperature and saturation pressure.13 If the depth of the upper ocean is taken to be 75 m 

(see Table 2), then its heat capacity is CO = 3.14025 × 108 J ∙ K–1 ∙ m–2. If the upper ocean depth is 

150 m, the heat content would be CO = 6.2805 × 108 J ∙ K–1 ∙ m–2. The total heat capacity of the 

mixed atmosphere-ocean layer equals the sum of the heat capacities of the atmosphere and upper 

ocean; for a depth of 150 m, CAO = 6.3830 × 108 J ∙ K–1 ∙ m–2. These values would be used in a 

simple one-layer, mixed atmosphere-ocean model. 

One mole of CO2 has a weight of 44.0087 grams (g),14 composed of 12.0107 g of carbon 

and two times 15.999 g of oxygen. Upon multiplying the CO2 atmospheric volume by 44.0087 

g CO2 and then dividing by 28.971 g/mole, which is the average molar mass of dry air, we 

get the percent of CO2 in the atmosphere by mass rather than volume.15 For example, if the 

concentration of CO2 in the atmosphere is 415 ppm, then we have the following mass of 

carbon in the atmosphere as a percent: 

                                                      
13 See Engineering Toolbox at https://www.engineeringtoolbox.com/sea-water-properties-d_840.html 
[accessed May 7, 2021]. For the ocean, at a temperature of 12oC and saturation pressure of 0.01374 bar, the 
heat capacity cw equals 4.003 kJ ∙ kg–1 ∙ K–1. For water, the specific heat capacity of water is simply 4.187 
kJ kg–1 K–1.  
14 Here g denotes grams, although in equation (8) and later on g is also used to denote the gravity constant. 
It should be clear which is which from its context. 
15 See http://www.grisanik.com/blog/how-much-carbon-is-in-the-atmosphere/ [accessed May 7, 2021]. See 
also Moore (2016). 

https://www.engineeringtoolbox.com/sea-water-properties-d_840.html
http://www.grisanik.com/blog/how-much-carbon-is-in-the-atmosphere/
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Table 2: Physics of Climate Change: Parameters 
Parameter Valuea Units of measurement 
Total mass of the atmosphere 5.148 × 1018 kg 
Water vapor mass 12.7 × 1015 kg 
Surface area of the Earth 5.114 × 1014 m2 
Surface area of the oceans 3.580 × 1014 m2 
Specific heat capacity of oceans 4187 [4200] J kg–1 K–1 
Heat flux of global ocean surface 
     1971 – 2010 
     1993 – 2010 

 
0.55 
0.71 

 
W m–2 
W m–2 

Ocean warming rate 
     Upper 75 m of ocean 
     At 200 m 
     At 700 m 
     At 3,000 m 

 
0.11 [0.09, 0.13] 

0.04 
0.015 
0.01 

 
oC per decade 
oC per decade 
oC per decade 
oC per decade 

Average ocean heat gain rates 1993 – 2017 
     0 to 700 m depth 
     700 to 2,000 m depth 

 
0.36 – 0.40 
0.19 – 0.35 

 
W m–2 
W m–2 

Average Earth energy gain 1971 – 2010  0.42 W m–2 
a Alternative values or ranges are provided in square parentheses.  
Sources: Trenberth & Guillemot (1994); Dut (1998); Trenberth & Smith (2005); McGuffie & Henderson-Sellers (2009); Levitus 
et al. (2012); IPCC (2013, pp. 260-266); NOAA (2018). 

% Mass carbon = 0.0415%×44.0087 g ∙ CO2 ∙ mole–1 / 28.971 g ∙ mole–1 
= 0.06304% CO2 by mass  (10) 

Multiplying by the mass of the atmosphere given in Table 2 leads to a total carbon mass of 3,245.30 

Gt CO2. Assuming that, in 1750, the concentration of CO2 in the atmosphere was 280 ppm, CO2 

accounted for 0.042534% of the mass of the atmosphere, or total mass of 2,189.65 Gt CO2. In 

1900, the atmospheric concentration of CO2 was 295.7 ppm, which translates into 0.04492% of 

the atmosphere’s mass, or 2,312.48 Gt CO2.  

The oceans store some 38,000 Gt carbon or approximately 140,000 Gt CO2. Of this 

amount, we allocate 7.5% to the upper 150 m ocean layer and the remainder to the deep ocean to 

2,000 m. This gives inventories of approximately 10,500 Gt CO2 in the upper ocean and 129,000 

Gt CO2 in the deep ocean. 

How large are the feedbacks associated with the anthropogenic forcing? The feedback from 

clouds remains the largest uncertain feedback and probably the most controversial (Knutti et al. 

2017; Svenmark et al. 2017; Koonin 2021, Chapter 7). As more water vapor enters the atmosphere, 
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some of the vapor turns to water resulting in cloud formation. Clouds consist of water and water 

vapor; they have a warming effect because they control release of longwave radiation, but they 

also increase albedo resulting in cooling. The albedo effect is greater than the greenhouse effect 

for clouds that form in the low to mid atmosphere, while the opposite occurs for cirrus clouds that 

tend to be more pervious to solar insolation. However, “it will take decades before clouds can 

actually be resolved in climate change simulations using global [climate] models because of the 

required resolution, even if computing capacity continues to increase as it has” (Knutti et al. 2017, 

p. 731).16  

Transient and Equilibrium Climate Responses 

 Knutti et al. (2017) define the transient climate response (TCR) as the global mean surface 

warming from a doubling of CO2 in an experiment with an idealized 1% per year increase in 

atmospheric CO2 as determined by climate models; that is, it is an estimate of the warming 

resulting from a doubling of CO2 over a 70-year time period (as 1.0170 = 2.00), without allowing 

for the oceans to fully adjust. The a priori radiative forcing for a doubling of CO2 is: F2×CO2 = 3.7 

W/m2, as discussed in the context of equation (6); it reflects the value used in recent studies (Knutti 

et al. 2017). Another more recent measure is the transient response to carbon emissions (TCRE), 

which measures the change in global mean surface temperature at the end of a period, typically 

100 years, during which 1,000 GtC (or 3,667 Gt CO2) is emitted at a steady rate.17  

In contrast, the equilibrium climate sensitivity (ECS) is defined as the equilibrium warming 

                                                      
16 As Happer (2019) points out in a section on ‘Numerical Modeling’, if one is to characterize a 100 km 
thick atmosphere, climate models would need to store more than 250 billion numbers just to describe a dry 
atmosphere. Yet, the latest climate models find that less clouds form in the lower atmosphere resulting in 
greater warming as less solar irradiance reflects back to space (Zelinka et al. 2020; also see Koonin 2021, 
Chapter 4). 
17 See https://judithcurry.com/2019/12/23/3-degrees-c/ or https://en.wikipedia.org/wiki/Climate_sensitivity 
[both accessed 02 June 2020]. 

https://judithcurry.com/2019/12/23/3-degrees-c/
https://en.wikipedia.org/wiki/Climate_sensitivity
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that occurs as a result of doubling the concentration of CO2 in the atmosphere, but disregarding 

the Earth’s feedbacks. ECS represents the long-run temperature increase associated with a 

doubling of atmospheric CO2 above its pre-industrial level, followed by no further CO2 emissions, 

and then after allowing sufficient time for the deep ocean to return to equilibrium in response to 

surface warming (which could take as much as a 1000 years). Therefore, ECS must be greater than 

TCR. Projections of future warming are particularly sensitive to the choices of these parameters.  

What are the values of ECS and TCR? Three approaches have been employed to estimate 

these values: (i) estimates based on actual observations; (ii) estimates obtained from climate 

models; and (iii) estimates based on physics. First consider observation based estimates. Using 

1869-1882 as a base period and 2007-2018 as a final period (∆T), Lewis and Curry (2018) find a 

median value for ECS of 1.50 K (range: 1.05-2.45 K) and a median value for TCR of 1.20 K 

(range: 0.90-1.70 K); however, if in-filled global temperature data are employed, estimates are 

somewhat higher, namely, 1.66 K (1.15-2.70 K) and 1.33 K (1.00-1.90 K) for ECS and TCR, 

respectively. Using co-integrated vector autoregressive models, Pretis (2020) estimates values of 

ECS of 1.37-1.67 K in his main model, but finds a value of 2.16 K in his ‘preferred model’. He 

estimates TCR values of 1.24-1.38 K if F2×CO2 is assumed to equal 3.7 W/m2, and 1.15-1.28 K if 

F2×CO2 equals 3.44 W/m2, with his preferred model yielding the higher values. Similar values of 

ECS and TCR have been found by others based on observational data (e.g., see Otto et al. 2013; 

Richardson et al. 2016; Knutti et al. 2017). 

Estimates of ECS and TCR based on climate models tend to be significantly higher than 

those based on observed data, primarily because climate models predict greater warming than 

observed in practice (Christy & McNider 2017; Evring et al. 2019; Happer 2019; Zhu et al. 2020). 

Climate modelers argue that observations do not adequately account for the physics of the 
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feedbacks and, therefore, “evidence from climate modelling favours values of ECS in the upper 

part of the ‘likely’ range [1.5-4.5 K], whereas many recent studies based on instrumentally 

recorded warming ... favour values in the lower part of the range” (Knutti et al. 2017, p. 731). The 

‘best-effort’ models used in the AR5 report (IPCC 2013) find ECS values in the range 2 K to 5 K, 

with a best estimate of 3.0 K (Knutti et al. 2017). Later studies by Otto et al. (2013) using an energy 

balance model (EBM) find an ECS of 2.0 K (range: 1.2-3.9 K) and TCR of 1.3 K (0.9-2.0 K) for 

the first decade of the 21st Century, lower than previous estimates for the 1990s (1.6 K) and the 

1970-2007 period (1.4 K), while Phillips et al. (2020) find a best estimate of 2.05 K. Based on 

simulations from an ensemble of climate models developed under the Coupled Model Inter-

comparison Project (known as CMIP5), Richardson et al. (2016) calculate a TCR value of 1.34 K 

(0.8-2.6 K) for a mixed layer; they do not attempt to calculate ECS values. The CMIP6 ensemble 

of climate models prepared for the forthcoming Sixth Assessment Report (AR6) employ 

unrealistically high values of ECS, which result in warming that does not track with paleoclimate 

data (Monckton 2019; Zelinka et al. 2020; Zhu et al. 2020; McKitrick & Christy 2020).  

Molecular physicists have used the HITRAN database to estimate much lower values of 

ECS. The reason is that CO2 molecules can only absorb outgoing radiation of certain wavelengths. 

Given limitations of the wavelengths, the CO2 in the atmosphere eventually gets ‘saturated’ and 

the extent to which additional atmospheric CO2 can absorb further radiation is limited 

(Schildknecht 2020; van Wijngaard and Happer 2020). This is evident in Figure 1, which provides 

the wavelengths are which atmospheric CO2 would absorb outgoing radiation and the available 

radiation to absorb at those wavelengths. Further, the wavelengths that are absorbed methane 

(natural gas) are the same as those of water vapor, with the result that methane emissions are not 

likely to be a major contributor to climate warming (van Wijngaard and Happer 2019). Thus, it is 
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not surprising that Smirnov (2020, p.194), for example, provides an estimate of ECS of 0.6±0.3 

oC. Later he suggests a value of 2.1±0.4 K, “but in this case other reasons than those connected 

with CO2 molecules are responsible for the global temperature change” (p.195).  

  
Figure 1: Wavelengths at which gases absorb outgoing infrared radiation. Notice that less 

radiation occurs (top panel) at the wavelengths absorbed by CO2 (CO2 panel)18 
 

 

                                                      
18 This figure was provided by William Happer and found at 
https://www.researchgate.net/figure/Absorption-bands-in-the-Earths-atmosphere-created-by-greenhouse-
gases-and-the-resulting_fig8_265041566.  

https://www.researchgate.net/figure/Absorption-bands-in-the-Earths-atmosphere-created-by-greenhouse-gases-and-the-resulting_fig8_265041566
https://www.researchgate.net/figure/Absorption-bands-in-the-Earths-atmosphere-created-by-greenhouse-gases-and-the-resulting_fig8_265041566
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3. NUMERICAL MODELING OF CLIMATE CHANGE 

In this section, we consider three different climate models that can be used in the DICE model, but 

only describe in detail the current model used in DICE. One model we consider essentially has 

zero dimension because it treats the atmosphere, oceans and terrestrial systems as a single unit. It 

constitutes a simple energy-balance model (EBM) because it identifies the heat reaching Earth and 

that subsequently escaping back to space. Any change in the difference between incoming and 

outgoing radiation constitutes a radiative forcing that, if positive (negative), increases (lowers) the 

Earth’s mean temperature. A second model separates the atmosphere and upper component of the 

ocean from the deeper ocean, with carbon and heat transferred from the atmosphere/upper ocean 

to the deep ocean, and vice versa. Given a particular radiative forcing, it could take many years, 

ranging from decades to centuries, for the two-layer system to get back into equilibrium. Finally, 

a third variant of the EBMs is used in the DICE model. It has three layers—the atmosphere, an 

upper ocean layer and a deep ocean layer, with exchanges of carbon dioxide and heat occurring 

across the boundaries between each of the adjacent layers. Again, it could take many years for the 

system to come into equilibrium once it is disturbed. 

Extremely large and complicated global climate models separate the globe into grids of 

varying size (e.g., grids that are 2.5o latitude × 2.5o longitude, or one that are measured as 5 km × 

5 km, or any other mesh size), with each grid including many atmospheric and ocean layers.19 

Transfers of carbon and heat among grids and layers are modeled. The terrestrial component of 

the Earth is also included in such models, with heat transfers dependent on the landscape (types of 

vegetation, land uses, terrain, etc.). Such models also examine energy balances, with exchanges 

across boundaries dependent on various parameters that are not based on known physical relations 

                                                      
19 An excellent overview of climate models for the layperson is provided by Koonin (2021, Chapter 5). 
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and often not explicitly identified. For example, climate modelers must make assumptions about 

the lapse rate—the rate at which temperature falls with altitude; the lapse rate is affected by 

radiation, convection, condensation and other factors, and is therefore highly variable. Likewise, 

little is known about cloud formation and whether and when clouds exacerbate or suppress 

warming caused by anthropogenic emissions of greenhouse gases.  

A simple energy-balance model is just as capable of predicting future trends in global 

average surface temperatures as a more-complicated global climate model (which also looks at 

energy balances). Even with a simple energy-balance model (EBM), assumptions need to be made 

regarding four parameters that are found in all climate models. In some cases, the assumptions are 

directly modelled via one or more mathematical equations, but they remain assumptions 

nonetheless. The model parameters that are to be specified are:  

1. the depth of the ocean layer assumed to impact heat storage; 
2. the transfer of heat between the ocean and the atmosphere; 
3. the feedback parameters determining whether, when temperatures rise as a result of some 

forcing, the warming is exacerbated (positive feedback) or suppressed (negative feedback); 
and 

4. the starting point—the initial temperature departure from the norm (i.e., the temperature 
anomaly), which affects the sequence of temperature projections from a climate model 
because, without additional forcing, temperatures should trend toward the norm. 

The values of these parameters are not known with certainty, but yet have a profound effect on 

outcomes.  

Simple EBMs are employed by economists (Calel and Stainforth 2017). Figure 2 shows 

the energy balance for single-layer and two-layer climate models. The DICE model, on the other 

hand, employs three layers—the atmosphere, an upper ocean layer, and a lower or deep ocean 

layer. To link the carbon and temperature components in climate models, it is necessary to 

determine the impact that changes in CO2 emissions have on the anthropogenic forcing in 

equations (6) and (7). We begin by describing a simple, one-layer energy balance model. 
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Figure 2: (a) Single Layer Climate Model (b) Two-Layer Climate Model 

Zero-dimensional, Single-layer Energy Balance Model 

The single-layer or zero-dimensional climate model is given by the energy balance equation 

(7), which we rewrite in Euler’s discrete form as: 

Tm,t+1 – Tm,t = (∆t /CA) (Ft – λ Tm,t), (11) 

where ∆t is the time step (measured in seconds). Consider how equation (11) evolves over time. 

Suppose we have a starting temperature anomaly given by Tm,0. For CA=3.1403 × 108 J ∙ K–1 ∙ m–2, 

an ocean depth of 75 m and an annual time step (86,400 s ∙ day–1 × 365 days), we rewrite (13) as 

Tm,t+1 – Tm,t = 0.100424 × (Ft – λ Tm,t).20 Then, given a forcing F and feedback λ, the temperature 

anomaly evolves on an annual time step as follows: 

Period 1: Tm,1 = Tm,0 + 0.100424 × [F0 – λ Tm,0] 
Period 2: Tm,2 = Tm,1 + 0.100424 × [F1 – λ Tm,1] 
… 
Period N: Tm,N = Tm,N–1 + 0.100424 × [FN–1 – λ Tm,N–1] 

The change (increase or decrease) in temperature after N years is therefore given by Tm,N. 

                                                      
20 In DICE version 2016R2-083017, Nordhaus’ parameter c1 =1/CAO = 0.1005. 
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It is clear from the above discussion that there are four parameters that drive this simple climate 

model: (1) the starting value of the temperature anomaly Tm,0 (which might be zero); (2) the 

assumed ocean depth; (3) the externally prescribed change in the net radiative plus non-radiative 

flux (F), which includes an assumption about the initial or current CO2 forcing to which the 

projected increase in CO2 forcing is added; and (4) the total feedback (in essence, the value of λ). 

Two-layer Energy Balance Model 

Now consider a climate model with two components—an upper mixed atmosphere-ocean layer 

and a deep ocean. We then rewrite equation (7) so that it includes the heat exchange, denoted by 

H, between the mixed upper layer and the lower deep-ocean layer: 

QAO = CAO 𝑑𝑑𝑇𝑇𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑

 = F – λ TAO – H, (12) 

where QAO is the change in the heat content of the mixed upper (atmosphere-ocean) layer relative 

to the steady state, and where, as previously, F denotes the radiative forcing and λTAO the outgoing 

long-wave radiation due to feedbacks.21 The change in the heat content of the lower (deep-ocean) 

layer, denoted Qd, is given by: 

Qd = Cd 
𝑑𝑑𝑇𝑇𝑑𝑑
𝑑𝑑𝑑𝑑

 = H = β (TAO – Td), (13) 

where Cd and Td are the heat capacity and temperature of the deep ocean, respectively; and β is a 

parameter relating to the transfer of heat between the upper and lower components. In the case of 

a single layer model (SLM), β = 0. 

Using observed data, Pretis (2020) estimated the key parameters for implementing the 

model described by equations (12) and (13). These are summarized in Table 3 for different 

                                                      
21 Note that CAO is measured as W ∙ yr ∙ m–2 ∙ K–1 and  𝑑𝑑𝑇𝑇𝐴𝐴𝐴𝐴

𝑑𝑑𝑑𝑑
 as K ∙ yr–1, so Q and H are measured in terms 

of W per m2. See also Table 3. 
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regression models. Depending on the regression model used, Pretis (2020) found λ to be between 

2.21 and 2.71 W ∙ K–1 ∙ m–2.22 The global anthropogenic radiative forcing between 1750 and 2011 

is estimated to be 2.29 W ∙ m–2 (range: 1.1-3.3 W ∙ m–2) (IPCC 2013, p.696), while temperature 

has risen about 1.0 K, which implies λ = 2.29 W ∙ m–2 ∙ K–1, well within the range estimated by 

Pretis (2020). These values, along with those of ECS and TCR provided earlier, are used in the 

climate models developed in the next section. In the DICE model, for example, λ = 𝐹𝐹2×𝐶𝐶𝐴𝐴2
𝐸𝐸𝐶𝐶𝐸𝐸

; if F2×CO2 

= 3.7 W ∙ m–2 and ECS = 3.1oC, then λ = 1.194 W ∙ K–1 ∙ m–2; for F2×CO2 = 3.44 W ∙ m–2 and ECS 

= 1.5oC, λ = 2.29 W ∙ K–1 ∙ m–2. 

Table 3: Estimates of Key Climate Model Parameters  
 Regression model 
Item #1 #2 #3 
β/Cd 7.82 7.43 7.35 
Cd [W ∙ yr ∙ m–2 ∙ K–1]a 22.72 24.39 24.39 
λ [W ∙ m–2 ∙ K–1] 2.71 2.29 2.21 
ECS [K] 1.37 1.62 1.67 
F2×CO2 (=λ×ECS) [W ∙ m–2]b 3.71 3.71 3.69 

Source: Pretis (2020, p.268). 
a This is usually measured as [J ∙ m–2 ∙ K–1], where 1 J = 2.4333 W ∙ yr.   
b This is the TCR value, which is taken as 3.7 or 3.44 W/m2, as noted in the text. 

Finally, as the atmospheric concentration of CO2 rises, the anthropogenic forcing increases 

as well. The equation that is used in climate models is equation (6), which is repeated here: 

Ft = F2×CO2 ×
𝑙𝑙𝑠𝑠�

CO2,𝑡𝑡
CO2,𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

�

𝑙𝑙𝑠𝑠(2)
, (6) 

where CO2,t and CO2,base refer to either the cumulative mass of carbon (measured in Gt CO2) in the 

atmosphere at time t and the pre-industrial period (1750 or some other base year), or to the 

                                                      
22 Alternatively, using HadCRUT4 annual data, Tm ≈ 0.75oC from 1971 to 2010, and the overall 
anthropogenic forcing over this period has been 0.42 W ∙ m–2 (Table 2); therefore, λ = F/T = 0.42/0.75 = 
0.56 W ∙ m–2 ∙ K–1, which dampens the increase in temperature from anthropogenic forcing. 
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concentration of CO2 in the atmosphere (measured in ppm) at t and 1750.  

Summaries of the physical parameters that are relevant for the development of climate 

models are provided in Table 4, along with data from the earlier Tables 1 through 3.23 In addition 

to observational data in Table 3, other observational evidence for many of the parameters has also 

recently come to light. For example, de Larminat (2019) provides information on the feedback 

parameter and scaling factors used in conjunction with a priori forcings that inform equation (5). 

He used historic temperature data for the period 1850-2010, and tree-ring and other proxy data for 

the period 850-2010, to estimate parameter values that differ significantly from those used by the 

IPCC. These are provided in Appendix Table A.1. 

A simple, two-layer box model (TLM) of the ocean-atmosphere employs an upper ocean 

mixing layer and a deep ocean layer. We can assume that the second (deep-ocean) layer has no energy 

sources or sinks other than the transfer of energy to/from the upper layer.24 The TLM can be 

described by the discretized form of equations (12) and (13) as follows:  

CAO (TAO,t+1 – TAO,t) = (Ft – λ TAO,t – Ht) ∆t, (14) 

Cdeep (Tdeep,t+1 – Tdeep,t) = Ht ∆t = β (TAO,t – Tdeep,t) ∆t (15) 

where CAO and Cdeep refer to the heat content of the atmosphere-upper-ocean layer (as discussed 

earlier) and the deep-ocean layer, respectively. The heat content of the deep-ocean component is 

given by: Cdeep = ρdeep×cm,deep×ddeep, where ρdeep is the density of water (1,000 kg/m3), cm,deep is the 

specific heat capacity of water (4.187 kJ kg–1 K–1), and ddeep is the ocean depth. If the deep ocean 

layer is identified as 75 to 2650 m, then the heat capacity of the deep-ocean layer is Cdeep = (2650 

                                                      
23 There are numerous studies that provide information that corroborates the data in Table 4, although there 
are also many studies that would lead to different parameterizations.  
24 There is a literature indicating that carbon in biomass created by photosynthesis near the surface will sink 
to the ocean floor, permanently locking up carbon (Buesseler et al. 2020). 
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– 75) m × 1000 kg/m2 × 4.187 kJ/(kg K) = 10.782 × 109 J ∙ K–1 ∙ m–2.  

Table 4: Summary of Physical Parameters used in the Climate Models 
Description Parameter Parameter Valuesa Units of 

measurement 
Forcing under 2×CO2 F2×CO2 3.7 [3.44] W ∙ m–2 
Carbon content of atmosphere in 1750 CO2,1750 2,184.9558 Gt CO2 
Carbon content of atmosphere in 1900 CO2,base 2,307.4694 Gt CO2 
Carbon content of atmosphere in 2020 CO2,2020 3,238.4166 Gt CO2 
Total carbon content of world oceans  140,000 

38,000 
Gt CO2 

Gt C 
Average depth of world oceansb  2,650 m 
Heat content of atmosphere CA 10.25 × 106 J ∙ K–1 ∙ m–2 
Heat content of ocean CO d × 4.187 × 106 J ∙ K–1 ∙ m–2 
Heat content of atmosphere plus 150 m of ocean CAO 638.300 × 106 J ∙ K–1 ∙ m–2 
Equilibrium climate sensitivity (observed) ECS 2.16 [1.05 – 2.70] K 
Equilibrium climate sensitivity (modeled) ECS 3.1 [1.5 – 6.0] K 
Transient climate response TCR 1.34 [0.8 – 2.6] K 
Time step (one year) ∆t 31.536 × 106 s 
Heat transfer coefficient from atmosphere to oceanb β 0.66 (0.0088) W ∙ m–2 ∙ K–1 
Slope of thermocline in upper ocean layerc  -0.03057 K ∙ m–1 
Slope of thermocline in deep ocean layerc  -0.00190 K ∙ m–1 
a Alternative values or range of values provided in square brackets; d refers to depth of ocean. 
b See https://worldoceanreview.com/en/wor-1/ocean-chemistry/co2-reservoir/ [accessed June 5, 2020]. β = H/ΔT where H is the 
heat flux (W∙ m–2) and ΔT is the difference between the surface temperature and that of the ocean layer. Levitus et al. (2012) 
indicate a warming rate H of 0.27 W/m2 with ocean temperature change in the top 700 m of 0.18oC, so β = 1.5.  
c Some studies assume a surface ocean layer of 1,000 m depth (equaling 50 million km3 water) with temperature falling from 
22oC to 6oC; a thermocline for the 1,000 to 4,500 m layer (460 mil km3 water) of 6oC to 2oC; and a deep ocean layer below 
4,500 m (890 mil km3) with temperatures from 2oC to 0oC. 
Source: See text for description and calculation of parameters. 

Finally, Ht is the heat transfer from the atmosphere-upper-ocean layer to the deep-ocean 

layer during period t; it is proportional to the temperature difference between the atmosphere-upper 

ocean and the deep ocean, where proportionality refers to the ‘conductivity’ of the upper ocean. If 

Ht is negative, heat is transferred from the lower to the upper layer. In the model, CO2 emissions 

(and mitigation of emissions or removals of CO2 from the atmosphere) affect the forcing Ft as 

discussed previously. 

Three-layer Energy Balance Model: Climate in DICE 

The DICE model employs a slightly different structure than that represented by equations (14) and 

(15). It takes the energy balance and separates it into two components, the carbon cycle (Figure 3) 

https://worldoceanreview.com/en/wor-1/ocean-chemistry/co2-reservoir/
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and the temperature component (Figure 4). To link the carbon and temperature components in the 

climate models, it is necessary to determine the impact that changes in CO2 emissions have on the 

anthropogenic forcing in equation (7). Using data from NOAA (2018), we calculate the slope of 

the thermocline in Figure 4 for the upper ocean with a depth of 75 m to be –0.03057oC per m of 

depth, whereas the slope is –0.0019 oC per m of depth from 75 m to well over 3,000 m. 

In the DICE model, the geophysical, carbon-climate equations consist of a carbon module 

and a temperature module (Nordhaus 2013, 2017, 2018a; Calel and Stainforth 2017). The 

difference between a simple two-layer model and the model employed in DICE is evident upon 

comparing Figure 2 with Figures 3 and 4, which provide, respectively, the carbon and temperature-

energy components found in DICE. In describing the DICE climate model, we follow Nordhaus’ 

specification. 

 
Figure 3: Carbon Cycle in the DICE Model (M refers to carbon) 
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Figure 4: Temperature Component in the DICE Model 

Carbon Cycle in DICE Model 

Consider a climate system consisting of an atmosphere (denoted by A), upper ocean (U) and deep 

(lower) ocean (D). We can write the carbon flux equations for each component of the system in 

terms of its carbon sources and sinks (and measured in terms of Gt CO2).  

𝑑𝑑𝑀𝑀𝐴𝐴
𝑑𝑑𝑑𝑑

= e(t) + ψ12 MU – ψ21 MA (16) 

𝑑𝑑𝑀𝑀𝑈𝑈
𝑑𝑑𝑑𝑑

= ψ21 MA + ψ23 MD – (ψ21 + ψ12) MU (17) 

𝑑𝑑𝑀𝑀𝐷𝐷
𝑑𝑑𝑑𝑑

= ψ32 MU – ψ23 MD (18) 

where e(t) is the rate of emissions (Gt CO2 ∙ s-1), and MA,t, MU,t and MD,t represent the carbon in the 

atmosphere, upper ocean and deep ocean reservoirs, respectively. The ψij parameters describe the 

rate of carbon exchange from reservoir i to reservoir j (in s–1), and are equivalent to an inverse 

timescale. In the absence of any sources, the integrated solution for carbon in a given reservoir is 

simply an exponential decay with e-folding timescale of τij =1/ψij. This can also be interpreted as 

a ‘residence time’ of carbon in the various reservoirs (layers), which is a common concept in the 

Upper ocean

Deep ocean

Atmosphere T

β(T–Tdeep)
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earth sciences.25 

Integrating the discretized equations (16) through (18) enables us to represent the carbon 

cycle in Figure 3 in the equations given by Nordhaus: 

MA,t = Et–1 + (1 – φ12) MA,t–1 + φ21 MU,t–1 (19) 

MU,t = (1 – φ21 – φ23) MU,t–1 + φ12 MA,t–1 + φ32 MD,t–1 (20) 

MD,t = (1 – φ32) MD,t–1 + φ23 MU,t–1 (21) 

For a given carbon reservoir, MR, R={A, U, D}, MR,t is the total carbon in a given reservoir at time 

t, and MR,t–1 and Et–1 are the reservoir values and total emissions in the previous time step. For a 

timestep, ∆t, φij = ψij ∆t is the fraction of carbon transferred between reservoirs, while (1 – φij) 

represents the proportion of carbon that is retained to the next period. Note that 0 ≤ φij ≤ 1, ∀i,j. 

The values of the parameters used in the current study and those used in earlier versions of DICE 

are found in Table 5, with the retention terms written as φii in Nordhaus’ notation.26 Note that the 

φij values must be scaled by ∆t when using different model time steps; however, ψij values are 

independent of the timestep used. 

Temperature Module in DICE 

In the DICE model, the temperature flux between the atmosphere and deep ocean depends on the 

gradient in the upper ocean (as shown in Figure 4) and thereby the depth of the upper ocean. The 

temperature in each period is given by the following equations: 

Tt = Tt–1 + 𝛥𝛥𝑑𝑑
𝐶𝐶𝑠𝑠𝑢𝑢

 [Ft–1 – λ Tt–1 – β (Tt–1 – 𝑇𝑇𝑑𝑑−1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)] (22) 

                                                      
25 Note that these should be easier to find and define than Nordhaus’ proportional transfer coefficients as 
residence times are commonly estimated in the literature. 
26 These values do not need to be defined, as they are simply equal to (1–∑ 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 ). 



29 | P a g e  
 

𝑇𝑇𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑−1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛥𝛥𝑑𝑑
𝐶𝐶𝑑𝑑𝑏𝑏𝑏𝑏𝑢𝑢

 (Tt–1 – 𝑇𝑇𝑑𝑑−1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (23) 

where T is the increase in atmospheric temperature in oC since pre-industrial times; λ = 𝐹𝐹2×𝐶𝐶𝐴𝐴2
𝐸𝐸𝐶𝐶𝐸𝐸

; 

Tdeep is the increase in lower ocean temperature in oC since 1750; and Ft is the increase in radiative 

forcing (W/m2) from 1750 in period t. The value of F2×CO2 is taken to be 3.44 W/m2 or, more often, 

3.7 W/m2 (with Nordhaus using 3.6813 in DICE v2016R), while ECS is set to a value between 1.5 

and 4.5 K.  

Table 5: Parameter Values used in the DICE Model, Past and Current  
Parameter DICE 2016R2 DICE 2013 DICE 2008 Current 

 General 
F2×CO2 3.6813 3.8 3.8 3.7 
ECS 3.1 2.9 3.2 2.0 

 Damage function 

a1 (intercept) 0 0 0  
a2 (quadratic term) 0.00236 0.00267 0.0028388  

a3 (exponent) 2.0 2.0 2.0  
 Carbon module 

φ11 0.88 0.912 0.810712 0.9 
φ21 0.12 0.088 0.189288 0.1 
φ12 0.196 0.052267 0.097213 0.0033 
φ22 0.797 0.945233 0.852787 0.9917 
φ32 0.007 0.0025 0.05 0.0050 
φ23 0.11433 0.038329 0.003119 0.0015 
φ33 0.98857 0.961671 0.996881 0.9975 

 Temperature modulea 
c1 =

𝛥𝛥𝑑𝑑
𝐶𝐶𝑠𝑠𝑢𝑢

 0.1005 0.098 0.208 (3.0767, 0.0973)b 
β 0.0880 0.088 0.31 0.008 [1.3] 

c2 =
𝛽𝛽𝛥𝛥𝑑𝑑
𝐶𝐶𝑑𝑑𝑏𝑏𝑏𝑏𝑢𝑢

 0.0250 0.025 0.05 0.00034 
a The parameters are as follows: c1 is the adjustment speed of the atmospheric temperature; β is the heat loss from the upper 
ocean & atmosphere to the deep ocean; and c2 is the coefficient representing the heat gain by the deep ocean. 
b The two values depend on (CA, CAO) from Table 3 and use a one-year time step. 
Source: Calel and Stainforth (2017) and authors’ calculations from various DICE models. 

Equations (22) and (23) are similar to (14) and (15), with the variables and parameters in 

the above equations defined earlier. The heat content of the atmosphere is given by CA, as described 
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earlier, and is provided in Table 3. If the depth of the upper ocean is taken to be 75 m, then the 

heat capacity of the upper ocean layer would be Cup = 75 m × 1000 kg/m3 × 4.187 kJ/(kg K) = 

314.025 × 106 J ∙ K–1 ∙ m–2. For the deep ocean of 2,650 m, the heat capacity would be Cdeep = 

(2650 – 75) m × 1000 kg/m3 × 4.187 kJ/(kg K) = 10,781.525 × 106 J ∙ K–1 ∙ m–2. Values of the 

forgoing parameters used in various DICE models and the current study are also found in Table 5. 

Here parameter β is the heat transfer coefficient (W m-2 K-1), describing the efficiency of 

energy transfer between the atmosphere and deep ocean through the upper ocean. Nordhaus used 

a value of 0.31 W m-2 K-1 in DICE 2008, and a value of 0.088 W m-2 K-1 in subsequent models, 

while Gregory and Mitchell (1997) use a larger value of 0.66 W m-2 K-1 in their application of the 

DICE model. It is not immediately clear how these values were obtained. 

As with ψij above, we can also determine a timescale for thermal mixing. From simple 

dimensional analysis of Equations (22) and (23), we see that 

𝜏𝜏𝑇𝑇 = 𝐶𝐶𝑅𝑅
𝛽𝛽 . (24) 

is the (mixing) timescale for heat within a given reservoir R with a heat capacity, CR. Calculating 

the value of 𝜏𝜏𝑇𝑇 for the upper and deep ocean layers using the 2016R2 parameters in Table 5, this 

gives us an upper ocean timescale of ~113 years, and a deep ocean timescale of ~3000 years. Both 

are reasonable for ocean values (though the upper ocean is generally faster, but that is due to it 

being a thinner layer than 75 m); therefore, β can be defined according to the mixing timescale. 

Climate Model Projections 

NASA indicates that global mean temperature will increase by 1.8oC to 4.0oC during the 21st 

Century.27 The rise in temperatures will depend on the RCP scenario that is chosen. Four available 

                                                      
27 See https://scied.ucar.edu/longcontent/predictions-future-global-climate [accessed June 9, 2020]. 

https://scied.ucar.edu/longcontent/predictions-future-global-climate


31 | P a g e  
 

RCP scenarios are provided in Figure 5. Scenarios indicate by how much CO2 emissions are 

projected to increase above average emissions in 1990—the Kyoto Protocol baseline. The most 

pessimistic scenario (RCP8.5) has emissions increasing continuously so that they exceed baseline 

emissions by nearly 29 Gt CO2, while the most optimistic scenario (RCP2.6) has emissions rising 

to a maximum of 10.3 Gt CO2 in 2020 and then falling throughout the rest of the 21st Century, with 

reductions in global emissions beginning in 2080. Although many studies treat the RCP8.5 

scenario as business as usual, global emissions are already lower than projected; RCP8.5 assumes 

that “coal accounts for half of future carbon-dioxide emissions through 2100, and two-thirds of 

the emissions through 2500” (Rutledge 2014). This pathway should not be considered and 

certainly not as a business-as-usual scenario (Hausfather and Peters 2020). Further, each scenario 

is considered to be as likely to occur as any other. Figure 6 shows the projected concentrations of 

atmospheric CO2 for each of the four RCP scenarios. 

 
Figure 5: Projected Annual Emissions of CO2 under Four Representative Concentration 

Pathways (RCP) 
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Figure 6: Projected Concentration of Atmospheric CO2 under Four Representative 

Concentration Pathways (RCP) 

We can project different temperature scenarios for the RCP scenarios using the DICE 

model and compare it to the projections from the CMIP5 ensemble.28 These are provided in Figure 

7. The temperature projections suggest that the DICE model is running a bit hot compared to the 

large climate models used by the IPCC.  

 

                                                      
28 We also have temperature projections for the SLM and TLM models, but, at this time with the 
parameterization indicated in Tables 2 and 4 and the earlier discussion, these are quite a bit higher than the 
projections from DICE and the CMIP5 ensemble. Note, for example, that the average of the CMIP5 models 
is twice as large as observed temperatures since 1979; only the Russian INM-CM4 (Institute for Numerical 
Mathematics–Climate Model Four) predicts the least warming, tracking observed temperatures quite well. 
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Figure 6: Projected Temperatures: A Comparison of DICE Model Outcomes vs. CIMP5 

Averages, Four Representative Concentration Pathways  
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4. DICE MODEL 

The objective of the DICE model (Nordhaus 2013, 2017, 2018a,b) is to maximize the future 

discounted flow of social wellbeing subject to a set of constraints. The future flow of social welfare 

W is expressed as the discounted sum over future time periods of the population-weighted utility 

of per capita consumption (Nordhaus 2018b; p. 336):  

𝑊𝑊 = ∑ 𝑈𝑈(𝑐𝑐𝑑𝑑, 𝐿𝐿𝑑𝑑)𝑟𝑟𝑑𝑑
𝑇𝑇𝑚𝑚𝑏𝑏𝑚𝑚
𝑑𝑑=1   (25) 

where U is utility; L is population; c is per capita consumption (c = C/L where C denotes aggregate 

consumption); r is the discount factor, rt = (1+ρt)–t, where ρt is society’s consumption discount rate 

that weights the utilities of future generations but changes according to the Ramsey discounting 

formula (van Kooten 2021, pp.41-46); and t refers to time (where DICE employs a five-year time 

step, but we consider a one-year time step as well). The aggregate utility function employed by 

Nordhaus (Nordhaus 2018b, p.336) is defined as: 

U(ct, Lt) = Lt [ct
(1–α)/(1–α)],  (26) 

where ct
(1–α)/(1–α) is per capita utility, and α is the constant elasticity of the marginal utility of per 

capita consumption, which represents the extent to which consumption is substitutable across time 

or, more pertinently, across different generations. 

If α is close to zero, the consumption of one generation and another are close substitutes; 

if α is high, they are not close substitutes. The coefficient α thus also represents a measure of 

relative Intergenerational Inequality Aversion (IIA). Rezai and van der Ploeg (2016), whose IAM 

uses a utility function of the same general form as (26), provide a good discussion of this 

coefficient and its relation to a carbon tax. As additionally discussed in Kverndokk et al. (2013, 

p.4), who in turn cite Heal (2009), the value of α may influence climate change mitigation decisions 

in two ways. First, in terms of intergenerational equity, a higher value for α means that if 
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consumption is predicted to rise over time, the decision maker will assign a lower weight to the 

utility of future generations due to a higher aversion to future generations becoming wealthier than 

the present. Second, there is an implication for intra-generational equity. If the value for α is high 

(i.e., future generations valued less), then the decision maker will tend to undertake less climate 

change mitigation and poor nations are likely to suffer more from that choice than are wealthier 

countries. 

In their baseline analysis, Rezai and van der Ploeg (2016, p. 505) employ a “widely used” 

value of 2.0 for IIA (α in (26), φ in their notation), but they also use values of IIA = 1.0 to convey 

the importance of this parameter in terms of its implications for determining an optimal carbon 

tax. The DICE model uses a value of α = 1.45 (Nordhaus 2018b, p. 336). In his 2016 assessment 

of the implications of various sources of uncertainty in DICE, Nordhaus does not include the 

discount rate (of which, based on the Ramsey formula, IIA is one component) as an uncertain 

variable and acknowledges that “generational preferences are uncertain and might evolve 

differently over time. Uncertainties about preferences pose philosophical difficulties that are not 

easily represented in economic growth models and are therefore excluded” in that particular 

assessment of DICE (Nordhaus 2018b, p. 342).              

Note that the per capita utility function actually used in the DICE model differs from that 

shown in (26) and is:  

u(ct) = {[ct
(1–α) –1]/ (1–α)} – 1, (27) 

 which is the standard isoelastic (or constant relative risk aversion) utility function (Norstad 2011) 

given by u(c) = [c(1–α) –1]/ (1–α), plus an additive term (–1). The practical result of subtracting one 

from the standard isoelastic utility function is that u(c=1) becomes –1 instead of zero and u is 

reduced by a value of one for all other values of c.  
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Net output is specified as gross output minus damages and abatement costs or, employing 

variable notation slightly different from Nordhaus:  

Yt = (1 – Λt)(1 – Dt) Bt Kt
γ Lt

(1–γ), (28) 

where Yt is output net of damages and abatement at time t; Λt represents the fraction of output 

devoted at time t to reducing emissions of CO2; Dt denotes climate change damages as a fraction 

of output; Bt is total factor productivity; Kt is capital stock and services; and Lt is labor. Nordhaus 

implicitly assumes that population and labor are the same, so that per capita consumption needs to 

be considered as consumption per worker (see Nordhaus 2018b, pp.336-337). The capital stock 

changes over time according to 

Kt = It + (1–δK) Kt–1         (29) 

where It is the rate of investment in capital stock in period t and δK is the rate of capital depreciation. 

The following then holds as an accounting identity: 

Yt = Ct + It .  (30) 

In the DICE model, climate damages at time t are specified as (Nordhaus 2018b, p.338): 

Dt = d1 Tt
atm + d2 (Tt

atm)2, (31) 

where we again use slightly different notation than Nordhaus. Tt
atm denotes the ‘globally averaged 

temperature change’ at time t and the parameters d1 and d2 reflect estimated damages as a quadratic 

function of the change in temperature. Note that, in early DICE specifications, the damage function 

was expressed as Dt/(1+Dt) to be sure that damages were not greater than economic output. 

“However, the damage ratio does not approach 1 in the current projections, so the quadratic 

specification is preferred” (Nordhaus 2018b, p.338). 

The fraction of output devoted to reducing emissions of CO2 at any time is specified as:  
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   Λt = θ1,t 𝜇𝜇𝑑𝑑
𝜃𝜃2,  (32) 

where it is assumed that θ1,t = 0.0741 × 0.0904(t−1) and θ2 = 2.6 so that, in period 1 if CO2 emissions 

are to equal zero, abatement costs would need to equal 7.41 percent of output and that percentage 

would then decline through time at 2% per period (Nordhaus 2018b, p.337). Several factors follow 

from (32) and the assumptions pertaining to its parameters. First, since Λt is the fraction of output 

devoted to abatement expenditures, total CO2 abatement costs are proportional to output Yt and are 

an increasing function of the emissions reduction rate ut, so that total abatement costs at time t are: 

At = θ1,t Yt 𝑢𝑢𝑑𝑑
𝜃𝜃2.  (33) 

Second, DICE assumes that a ‘backstop technology’ exists that can produce energy 

services at a level of zero greenhouse gas emissions. In that case, μt is set equal to one and “the 

backstop price in 2020 is $550 per ton of CO2-equivalent, and the backstop cost declines at ½ 

percent per year” (Nordhaus 2018b, p.337). Additionally, DICE assumes that negative emissions 

energy service production technologies (which would imply μ > 1) are not available in period 1 

but would materialize after the year 2150.   

Total emissions of CO2, Et, are specified as the sum of industrial emissions Et
ind, which are 

endogenous in the model, and exogenously-determined emissions from land Et
land: 

Et = Et
ind + Et

land.  (34) 

Furthermore, uncontrolled industrial CO2 emissions at time t are assumed to be given by the level 

of carbon intensity, σt, times gross output. Actual (post-control) industrial emissions Et
ind are then 

reduced according to the emissions reduction rate ut, and equal:  

Et
ind = σt (1–ut) Bt Kt

γ Lt
(1–γ).  (35) 

Additionally, there is an inequality constraint related to the availability of fossil fuels, denoted CC 
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and which are utilized in industry and thereby produce industrial emissions of CO2: 

CC ≥ ∑ 𝐸𝐸𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑
𝑇𝑇𝑚𝑚𝑏𝑏𝑚𝑚
𝑑𝑑=1 .  (36) 

  The emissions reduction rate, ut, is the control variable in the model. Nordhaus notes that 

the level of carbon intensity, σt, is also referred to as the CO2-output ratio and that the historical 

decline in this ratio on a global scale (as observed at an average negative trend of 1.5% per year 

since 1960) is termed decarbonization (Nordhaus 2018b, pp.338-339). Therefore, the DICE model 

assumes that the rate of decarbonization in future periods will be –1.5% annually. 

5. EXTERNAL FORCING IN DICE: AN APPLICATION29 

In this section, we use Nordhaus’ DICE model to investigate the economics of restoring 900 

million ha of forestlands as proposed by Bastin et al. (2019). They argue that “ecosystem 

restoration [is] one of the most effective solutions at our disposal to mitigate climate change,” and 

that, by restoring 900 million ha of forested lands, one-quarter of the atmospheric carbon pool 

could be sequestered in new biomass. In the DICE model, external forcing occurs through changes 

in land use, with Nordhaus arguing that land use changes (principally deforestation) result in 

additional CO2 emissions, although such emissions decline over time as a result of increased 

conservation. By looking at the most optimistic restoration case, van Kooten (2020) finds that a 

large terrestrial sink can reduce projected future temperatures by more than 30%, with 

accompanying smaller marginal damages. It also turns out that optimal levels of industrial 

emissions increase, thereby reducing the beneficial temperature response of the forestry 

investment.  

One essential change is made to the DICE model. In the DICE model, Nordhaus treats CO2 

                                                      
29 The discussion in this section is based on van Kooten (2020). 
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emissions from land use and land use changes as exogenously determined. He assumes exogenous 

emissions decline over time. Upon setting exogenous emissions to zero and comparing this to the 

baseline results, it turns out that the path of optimal marginal damages (as measured by Nordhaus’ 

social cost of carbon, or SCC) is almost unchanged. The SCC of carbon is lower by $0.35/tCO2 

($0.15/tCO2) in 2100 (2050) when there are no exogenous emissions (ED,t=0, ∀t) compared to 

when emissions from deforestation are assumed to occur as noted above [ED,t=2.6×(1–0.022)t–1 Gt 

CO2, t=1, …, 100]. 

In the analysis, we have ED,t = 900 mil ha × K m3/ha × 0.2 tC/m3 × 44 tCO2/12 tC, where 

C refers to carbon and K to the value of the mean annual increment (MAI). Upon dividing by 1000, 

this gives ED,t = 0.660×K Gt CO2, ∀t. In the DICE model, this amount is removed from total 

emissions in each period. The DICE model then determines the level of industrial emissions in 

each period so that overall economic welfare across time is maximized. 

The results are provided in Figures 7 and 8. These indicate that the restoration of 900 

million ha could have a significant impact on future climate damages and optimal emissions from 

industrial activities. Even in the current model year (2015), restoration of forests could reduce 

marginal damages by 3.4 (MAI = 2.5 m3 ha–1) to 18.1 (MAI=10.0 m3 ha–1) percent. From Figure 

7, marginal damages could potentially be reduced by 3.5% to 31.0%  by 2050, and by 5.3% to 

32.4% by 2100.  

The introduction of a large terrestrial carbon sink will, however, concurrently increase the 

economically optimal level of industrial emissions of CO2 (Figure 8). This is because the projected 

rise in temperature is lower with higher levels of timber growth. The projected temperature 

increase by 2050 of 2.03oC in the base case falls to 1.90oC for the low growth scenario to 1.56oC 

in the high growth scenario. For 2100, the temperature projections fall from 3.48oC in the base 



40 | P a g e  
 

case to 3.16oC and 2.21oC for the low and high growth scenarios, respectively. 

 

  
Figure 7: Estimates of the marginal damages (i.e., social cost of carbon) from the DICE 

(vR2016) model for the base case and four levels of assumed rates of timber growth on 900 
million ha, where values indicate the MAI in m3 ha–1. Source: van Kooten (2020) 

 

  
Figure 8: Departure of optimal industrial emissions of CO2 from baseline emissions for four 
levels of assumed rates of timber growth (measured by MAI in m3 ha–1) on 900 million ha, as 

derived from the DICE (vR2016) model. Source: van Kooten (2020) 
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6. CONCLUDING DISCUSSION 

Policy makers need estimates of the economic damages of global climate change to guide decisions 

about carbon taxes and assess the benefits of mitigation. Currently, the DICE model is one of the 

few IAMs available to generate information about the marginal damages from fossil fuel 

emissions—the social cost of carbon—and thus yields useful outputs for assessing alternative 

mitigation proposals. At the same time, DICE and other IAMs yield outcomes that are quite 

sensitive to assumptions regarding parameters that determine linkages between (1) CO2 emissions 

and global temperatures, and (2) global temperatures and economic damages. The analyses in this 

manuscript represent incremental steps toward elucidating the importance of assumptions made in 

both of these IAM components. The results thus far affirm the sensitivity of climate component 

outputs to parameter values. Additionally, our climate modelling results indicate that the climate 

component of the DICE model tracks the CMIP5 ensemble averages quite well for the four RCP 

scenarios considered here; it appears, indeed, that projections of average global surface 

temperatures fall well within the band of temperature projections from the climate models 

comprising the CMIP5 ensemble. 

Our primary next steps will be to continue to examine the importance of uncertainty in 

parameters, with a focus on coefficients that are both highly uncertain as well as key in terms of 

determining model outputs. In the climate component of the DICE model, one such parameter is 

the transfer of heat from the atmosphere and upper (‘surface’) ocean layer to the deep oceans (β). 

In the economic component, it is necessary to investigate the influence of uncertainty in several 

parameters. One example is the coefficient α, the measure of intergenerational inequality aversion, 

which is a component of the social discount rate. The influence of this parameter has not been 

addressed in the most recent assessment of the impacts of uncertainty in DICE. More broadly, next 
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steps for future research will involve disentangling the social discount rate for monetary values 

(goods) from the discount rate used for carbon emissions. The intent will be to inform modellers 

and policymakers who wish to account for the urgency of mitigation due to the time lags and 

irreversibilities associated with carbon emission impacts. 
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APPENDIX 

Table A.1: Climate Feedback and Scaling Factors Based on Observational Data 
 Historic temperatures  All proxies  Proxies without tree rings 
Parameter Median 66.6% CI  Median 66.6% CI  Median 66.6% CI 

λ 1.03 [0.90 1.49]  1.19 [0.67 3.68]  1.47 [0.74 4.22] 
aanth 0.99 [0.76 1.17]  0.68 [0.55 1.08]  0.10 [-0.75 0.36] 
avolc 0.34 [0.20 0.53]  0.53 [0.27 1.27]  0.26 [0.08 0.84] 
aLsol 1.28 [-2.14 5.99]  6.07 [3.16 16.50]  14.90 [7.38 42.22] 
aHsol 0.42 [-0.58 1.38]  0.58 [-1.60 2.54]  -0.68 [-3.05 0.27] 

Source: de Larminat (2019, Table 2) 
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